Journal of Organometallic Chemistry, 107 (1976) 249–255 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

INVESTIGATIONS ON ORGANOANTIMONY COMPOUNDS

XIV *. COMPLEXES OF MONOCHLORODIORGANOANTIMONY(V) MOIETIES WITH DIANIONIC ONO TRIDENTATE LIGANDS

H.A. MEINEMA and J.G. NOLTES **

Organisch Chemisch Instituut TNO, Utrecht (The Netherlands) FRANCESCA DI BIANCA, N. BERTAZZI, ELEONORA RIVAROLA and R. BARBIERI Istituto di Chimica Generale, Università di Palermo, 90123 Palermo (Italia) (Received September 17th, 1975)

Summary

Diorganoantimony(V) complexes of the type R_2 SbClTrid (R = Me, Ph) containing dianionic, potentially tridentate Schiff-base ligands with ONO donor atoms (Trid²⁻) have been prepared and characterized. IR and NMR data suggest an octahedral coordination environment for the antimony atom with meridional arrangement of the ONO ligand atoms and a linear CSbC skeleton.

ve

Introduction

In a previous paper from our laboratories the synthesis and structural studies of novel complexes formed by R_3Sb^V moieties (R = Me, Ph) and "planar" tridentate ligands ($Trid^{2-}$) having ONO and SNO donor atoms have been reported [1]. In these compounds the antimony atom attains the coordination number six as a result of chelation by the dianionic ligand which occurs in the Schiff-base form. The ligand donor atoms as well as the organic radicals assume meridional configurations in an octahedral structure around antimony, both in the solid state (as inferred, for example, from the crystal and molecular structure of Me₃SbSah, H₂Sah being 2,2'-(methylidynenitrilo)diphenol)) and in solution [1]

We have now extended these researches to corresponding complexes of R_2Sb^{v} with the Trid²⁻ ligands Sah²⁻, Bah²⁻ and Aah²⁻, where Trid²⁻ have ONO donor atoms [1,2].

* To whom correspondence should be addressed.

^{*} For Part XIII see ref. 28.

The novel complexes R_2 SbClSah, R_2 SbClBah (R = Me and Ph) and Ph₂Sb-ClAah have been obtained via the metathetic reactions 1 and 2. These reactions $Me_3SbTrid + R_2SbCl_3 \rightarrow R_2SbClTrid + Me_3SbCl_2$ (1)

 $Me_2SnTrid + R_2SbCl_3 \rightarrow R_2SbClTrid + Me_2SnCl_2$ (2)

proceed to completion as a result of the greater Lewis acidity of R_2Sb^V as compared with Me₃Sb^V and Me₂Sn^{IV}. The complexes R₂SbClTrid have been investigated by infrared spectroscopy in the solid state and PMR spectroscopy in solution. Results have been discussed mainly in connection with known spectroscopic characteristics of R_3 SbTrid and R_2 SnTrid complexes [1,2].

Experimental

The starting materials Me₂SbCl₃, Ph₂SbCl₃ · H₂O, Me₃SbTrid and Me₂Sn-Trid have been prepared by literature methods [1-4]. Anhydrous Ph_2SbCl_3 has been obtained by distillation of the azeotropic mixture C_6H_6/H_2O from benzene solutions of the aquated derivative and subsequent recrystallization.

The preparation of complexes R_2 SbClTrid has been carried out in CH₂Cl₂

TABLE 1							
ANALYTICAL AND PHYSICAL DATA FOR R2SbCITrid COMPLEXES							
Compound (colour)	М.р. (°С)	Analyses, found (calcd.) (%)					
		С	н	N	Cl	Sb	
Me ₂ SbClSah	218-220	45.56	3.86	3.72	8.22	30.38	
(yellow)	(dec.)	(45.20)	(3.77)	(3.52)	(8.92)	(30.56)	
Ph2SbClSah	210-218	57.33	3.66	3.13	6.47	22.71	
(yellow)	(dec.)	(57.45)	(3.64)	(2.68)	(6.80)	(23.30)	
Ph ₂ SbClSah · CCl ₄	220-225	46.29	3.04	2.17	25.28	17.91	
(yellow)	(dec.)	(46.16)	(2.83)	(2.07)	(26.20)	(18.00)	
Me ₂ SbClBah	185-190	48.79	4.47	3.16	8.66	27.21	
(orange)	(dec.)	(49.29)	(4.37)	(3.20)	(8.08)	(27.26)	
Ph ₂ SbClBah	220-225	59.21	4.35	2.33	6.58	21.56	
(orange)	(dec.)	(59.76)	(4.12)	(2.49)	(6.30)	(21.64)	
Ph ₂ SbClAah	225-230	54.74	4.40	2.78	7.64	24.09	
(green-yellow)	(dec.)	(55.18)	(4.23)	(2.80)	(7.08)	(24.32)	

or cyclohexane by reactions 1 and 2, operating under a N₂ atmosphere. The occurrence of the metathetic reaction has been studied by PMR spectroscopy on CDCl₃ solutions of solid residues obtained by evaporation to dryness of the reaction solutions. The formation of Me₂SbClTrid (see Table 4), Me₃SbCl₂ (δ Sb(CH₃) 2.30 ppm) or Me₂SnCl₂ (δ Sn(CH₃) 1.20 ppm), and the disappearance of the reagent Me₂SbCl₃ (δ Sb(CH₃) 2.90 ppm) have been detected in this way.

Me₃SbTrid (about 3 mmol in 40 ml of CH_2Cl_2) or Me₂SnTrid (about 3 mmol in 100 ml of cyclohexane) was added dropwise to an equimolar amount of R₂SbCl₃ in 30 ml of CH₂Cl₂ (or 100 ml of cyclohexane). The solvent

TABLE 2

INFRARED ABSORPTION BANDS OF R₂SbClSab AND THE CORRESPONDING COMPLEXES IN THE REGIONS 4000-1500 cm⁻¹ AND 620-250 cm⁻¹ a

Me ₂ SbClSah	Ph ₂ SbClSah ^c	Me ₃ SbSah	Ph ₃ SbSah	Assignments ^b
3050vw	3070w	3070vw	3050w(br))
2920vw	3030vvw	3010vw 2920vw	3020vw	ν (CH)
1610vs	1610vs	1610s	1610s	ν (C=N)
	1595(sh)	1600s(sh)	1600s	k, lin mono- and
1590vs		1590s	1590s	disubstituted benzene
1540m(br)	1550s	1540m(br)	1550m	ν(CΟ)
620m	620m	610m	615w	
610s	610c	605m 595m	600m	-
585mw	0103	595m	800m	1. (ShC-)
000mm		550m		$v_{as}(3002)$
	5555	00011		2(0003)
530vs	545vs	530vs	530s	
	01010	520vs	5665	24(SbCa)
495mw		490vw	490w	1(0203)
	485s		480s	v 9
	465s		465mw	v ?
475mw		455vw	455m	5.
	455s		445ms	v?
445w	440vw	440w	435vw	5.
380m	380s	365mw	365s	
340m	340mw	325vw	335m	
305(sh) ^d	300(sh) ^d	310vw	305ms	
			280ms	t(+lig.?)
ans d				
$275s^{d}$				ν (SbCl) + lig.
	apr.d			
	2855 2755 ^d			v(SbCl) + t + lig.
		270.00		
		2.0.1	260ms	t(+lig.?)

^a Nujol mulls (nujol bands omitted); hexachlorobutadiene mulls in the 3100-2900 cm⁻¹ region. Symbols for compounds as in the Introduction; s, strong; m, medium; w, weak; (br), broad; (sh), shoulder; v, very. ^b See text under Discussion and Refs. 5 and 6. Phenyl ring vibrations indicated by a letter refer to Whiffen's notation [6]. ν (C–O) according to Ref. 7. ^c Spectra of Ph₂SbClSah and Ph₂SbClSah · CCl₄ differ only in the 700-800 cm⁻¹ region, as follows: Ph₂SbClSah: 785ms; 760s; 745s; 745s; Ph₂SbClSah · CCl₄: a broad band (due to ν_{as} (CCl₄) with superimposed bands at 785vs; 780s; 760s; 745vs. ^d Components of a broad band.

251

was pumped off (totally for the CH_2Cl_2 , partially for the cyclohexane-containing solutions). The solid residue (or the crystalline precipitate) obtained was recrystallized from CH_3OH or from CH_3OH/C_2H_5OH or $CHCl_3/CCl_4$ 1/1 solvent mixtures to give pure products.

Difficulties have been encountered in the attempted preparations of R_2Sb -XTrid by the reaction of $R_2Sb(OR')_3$ with H_2Trid , as well as of R_2SbCl_3 with Na₂Trid. Solids of obscure composition were isolated.

Compounds recrystallized from $CHCl_3/CCl_4$ mixtures reveal a strong affinity for the solvent, as demonstrated by high Cl and low C content, even after extensive pumping in a vacuum line (0.1 Torr). This is particularly true for Ph₂SbCl-Sah, which on recrystallization from CCl_4 affords an adduct which analyzes perfectly for a 1/1 composition.

Elemental analyses were carried out by the Element Analytical Section of the Institute for Organic Chemistry TNO under the supervision of Mr. W.J. Buis. Results are given in Table 1.

Molecular weights have been determined with an AEI-MS 902 Mass Spectro-

TABLE 3

RELEVANT INFRARED ABSORPTION BANDS OF R_2 SbClTrid AND OF THE CORRESPONDING Pb₃SbTrid COMPLEXES (Trid = Bah AND Aah) IN THE REGIONS 4000-1500 cm⁻¹ AND 640-250 cm⁻¹ ^a

Me ₂ SbClBah	Ph ₂ SbClBah	Ph ₃ SbBah	Ph ₂ SbClAah	Ph ₃ SbAah	Assignments ^b
3070w	3050m(br)	3060m(br)	3060w 3000yw	3070m(br) 3000vw) } v(CH)
2930vw	2930vw		2930vw	2920vw	}
1590vs	1590vs	1590s	1585s	1590vs(br))
1570vs	1575vs	1565s	1575s	1575(sh)	$\nu(C=N), \nu(C=O),$
1500(sh)	1500(sh)	1500vs	1505vs	1505vs	$(\kappa(C = C); k, l, m)$
1475vs(br)	1475vs(br)	1475vs(br)	1470vs	1470vs)
			640w	635w	
625m	620m	620m	620m	620m	
575mw					v_{2} (SbC ₂)
565m	565s	560s	575mw	570w	
555s	555m	550s	565mw	560m	
			5255	520s	
475w			0-00	0	
	465vs	465vs	470m	465vs	} y?
			405111		,
		445vs	455m	445VS	y ?
420s	425mw	415s 400w	390mw	385m	
390m	405ms	385mw	365m	365s	
	355m	355mw	330mw	330s	
		290vs(br)		295vs	l <i>t</i>
				280s	<u> </u>
			300vs)
285s	295vs		290(sh)		v(SbCl) + t
280s	285vs		275(sh)		
	265mw	255mw	260w	260vs	t

a,b See footnotes of Table 2.

TABLE 4

Compound	Chemical shifts, δ (ppm) ^a					
	сн ₃ (Sb)	=CCH3	=Сн	Aromatic-H		
Me ₂ SbClSah	2.02		8.45	6.50-7.60		
Ph ₂ SbClSah - CCl ₄			8.38;8.26	6.60-8.10		
Me ₂ SbClBah	2.05	2.52	6.06	6.60-8.00		
Ph ₂ SbClBah		2.39	5.82	6.60-8.00		
Ph ₂ SbClAah		2.02;2.25 ^b	5.12	6.50-8.00		

PMR SPECTRAL DATA FOR COMPLEXES R2SbCitrid in CLCl3 at 27°C

^a Downfield from TMS. ^b Assigned to $CH_3-C \lesssim O^-$ and $CH_3-C \lesssim \overline{N}$, respectively, based on the comparison with the spectrum of Ph₂SbClBah.

meter at the Laboratory for Analytical Chemistry of the State University of Utrecht.

The infrared spectra have been measured with Perkin–Elmer Mod. 457 and 577 instruments in nujol and hexachlorobutadiene mulls between CsI windows in the 4000-250 cm⁻¹ range. Selected data are reported in Tables 2 and 3 which for purposes of comparison also present IR spectra data for the corresponding R_3 SbTrid complexes.

The PMR spectra were determined by a Jeol C-60 as well as by a Varian Associates HA-100 NMR spectrometer (see Table 4).

Discussion

The analytical data (Table 1) reveal for the compounds under investigation the stoichiometry R_2 SbClTrid. Molecular ion and degradation patterns observed in the mass spectra were in accordance with the presence of monomeric R_2 SbCl-Trid complexes. The too high chlorine content observed in the elemental analyses was found to be the result of the presence of CHCl₃, CCl₄ in the solid products.

Apart from vibrations inherent to the organic groups bound to antimony and tin corresponding $R_2SnTrid$, $R_3SbTrid$ and $R_2SbClTrid$ compounds show essentially analogous infrared spectra in the range 4000-600 cm⁻¹. Conclusions drawn from earlier discussions concerning infrared data of coordinated Trid²⁻ ligands, especially around 3000 cm⁻¹ and in the 1620-1450 cm⁻¹ range, would seem to hold true also for $R_2SbClTrid$. Based on the IR data reported in Tables 2 and 3 and those in ref. 2 the Trid²⁻ ligands occur in the Schiff-base form and act as a tridentate ligand by Sb–ONO coordination. Taking into account that these Trid²⁻ ligands according to X-ray and spectroscopic investigations assume a planar configuration when acting as a tridentate ligand [1,2,8-10], it is reasonable to assume a meridional arrangement of chelating ONO atoms also in R_2Sb -ClTrid.

Vibrations associated with Sb—Cl bonds and modes inherent to SbC₂ groups in Me₂Sb^V derivatives provide information concerning the configuration of R₂Sb-ClTrid complexes. On the basis of a thorough comparison of the spectra of R₃-SbTrid and R₂SbClTrid and of the spectra of Me₂SbCl₃ [11-13], Me₃SbCl₂ [14-

16], Ph₂SbCl₃ and Ph₂SbCl₃ · H₂O [17], and Ph₃SbCl₂ [14,18,19], ν (SbCl) modes in R₂SbClTrid, reported in Tables 2 and 3, have been assigned. The observed decrease of ν (SbCl) in the R₂SbClTrid complexes with respect to R₂SbCl₃ can be interpreted in terms of increased ionicity of the metal—halogen bond. The order of magnitude of ν (SbCl) in R₂SbClTrid corresponds to values detected in complexes R₂SbCl₂L₂ and R₂SbCl₃L (L₂ = bidentate, L = monodentate ligand) [11, 13,20,21]. Two of the three ν (SbC₃) bands expected in Me₃SbSah for an ideal $C_{2\nu}$ symmetry [1] have been identified with reasonable certainty (Table 2). These are in a frequency range usual for Me₃Sb^V derivatives [14-16,21-26]. Only ν_{as} (SbC₂) (usually found around 560-585 cm⁻¹) are IR active in Me₂SbClSah and Me₂SbClBah, no evidence being obtained for ν_s (SbC₂) (expected in the range 502-530 cm⁻¹) [12,13,20,21,27].

The infrared data discussed above strongly suggest an octahedral type of configuration for $Me_2SbClTrid$ in the solid state, with meridional ONO ligand atoms, and a linear CSbC skeleton (structure I). The latter structure seems reasonable, also for the Ph_2Sb^{V} complexes.

PMR spectra for complexes R_2 SbClTrid were run in CDCl₃ solution at room temperature. Data are given in Table 4. The signals are easily assigned on the basis of intensity ratios.

PMR spectra of $Me_2SbClTrid$ complexes (Trid = Sah, Bah) point to the presence of only one isomer in solution as only one = C—H singlet is observed. The presence of a singlet for the Me—Sb protons points to structure I in which the methyl groups occupy *trans* positions. This is in accordance with the conclusion drawn from IR data.

The appearance of two = C—H singlets in the PMR spectrum of $Ph_2SbCl-Sah \cdot CCl_4$ points to the presence in solution of two isomeric structures, possibly a *trans*-diphenyl and a *cis*-diphenyl isomer (cf. ref. 21). The occurrence of interchange between these isomers has not been observed. Both = CH singlets were observed in freshly prepared solutions and the intensity ratios did not change markedly in the range 25-70°C.

The PMR spectra of $Ph_2SbClBah$ and $Ph_2SbClAah$ point to the presence of only one isomer in CDCl₃ solution at 27°C as only one = C—H singlet has been observed.

The spectrum of $Ph_2SbClAah$ shows an interesting feature in that the singlet at 2.25 ppm is broadened with respect to that at 2.02 ppm suggesting non-rigid behaviour for the part of the Aah ligand.

Acknowledgements

Financial support of this work by Consiglio Nazionale delle Ricerche (Roma) and NATO (Research Grant No. 480) is gratefully acknowledged.

References

- 1 F. Di Bianca, E. Rivarola, A.L. Spek, H.A. Meinema and J.G. Noltes, J. Organometal. Chem., 63 (1973) 293.
- 2 R. Cefalù, R. Bosco, F. Bonati, F. Maggio and R. Barbieri, Z. Anorg. Allg. Chem., 376 (1970) 180; and refs. therein; R.H. Herber and R. Barbieri, Gazz. Chim. Ital., 101 (1971) 149; F. Di Biarca, to be published.
- 3 H.A. Meinema, H.F. Martens and J.G. Noltes, J. Organometal. Chem., 51 (1973) 223.
- 4 A.E. Goddard, J.N. Ashley and R.B. Evans, J. Chem. Soc., (1922) 978.
- 5 N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Acad. Press, New York, 1964.
- 6 D.H. Whiffen, J. Chem. Soc., (1956) 1350.
- 7 S.J. Gruber, C.M. Harris and E. Sinn, J. Inorg. Nucl. Chem., 30 (1968) 1805.
- 8 F. Umland, B.K. Poddar and H. Stegemayer, Z. Anal. Chem., 216 (1966) 125.
- 9 H. Preut, H.J. Haupt, F. Huber, R. Celafù and R. Barbieri, Z. Anorg. Allg. Chem., 407 (1974) 257.
- 10 H. Preut, F. Huber, H.J. Haupt, R. Cefalù and R. Barbieri, Z. Anorg. Allg. Chem., 410 (1974) 88.
- 11 I.R. Beattie, F.C. Stokes and L.E. Alexander, J. Chem. Soc. Dalton, (1973) 465.
- 12 G.O. Doak and G.G. Long, Trans. N.Y. Acad. Sci., 28 (1966) 402.
- 13 N. Nishii, Y. Matsumura and R. Okawara, J. Organometal. Chem., 30 (1971) 59.
- 14 G.R. Goel, E. Maslowski and C.V. Senoff, Inorg. Chem., 10 (1971) 2572.
- 15 G.G. Long, G.O. Doak and L.D. Freedman, J. Amer. Chem. Soc., 86 (1964) 209.
- 16 C. Woods and G.G. Long, J. Mol. Spectroscopy, 38 (1971) 387.
- 17 F. Di Bianca, H.A. Meinema, J.G. Noltes, N. Bertazzi, G.C. Stocco, E. Rivarola and R. Barbieri, Atti Accad. Sci. Lett. Arti Palermo, 33 (1973-74) 173; N. Bertazzi, to be published.
- 18 K. Shobatake, C. Postums, J.R. Ferraro and K. Nakamoto, Appl. Spectrosc., 23 (1969) 12.
- 19 G.O. Doak, G.G. Long and L.D. Freedman, J. Organometal. Chem., 4 (1965) 82.
- 20 H.A. Meinema, E. Rivarola and J.G. Noltes, J. Organometal. Chem., 17 (1969) 71.
- 21 H.A. Meinema, A. Mackor and J.G. Noltes, J. Organometal. Chem., 37 (1972) 285.
- 22 H.C. Clark and R. Goel, Inorg. Chem., 5 (1966) 998.
- 23 M. Shindo, Y. Matsumura and R. Okawara, J. Organometal. Chem., 11 (1968) 299.
- 24 J. Otera and R. Okawara, J. Organometal. Chem., 17 (1969) 353.
- 25 Y. Matsumura, M. Shindo and R. Okawara, J. Organometal. Chem., 27 (1971) 357 and refs. cited therein.
- 26 R.G. Goel and D.R. Ridley, J. Organometal. Chem., 38 (1972) 83 and refs. cited therein.
- 27 H.A. Meinema and J.G. Noltes, J. Organometal. Chem., 36 (1972) 313.
- 28 H.A. Meinema, A. Mackor and J.G. Noltes, J. Organometal. Chem., 70 (1974) 79.